_

Ray Casting

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence,
Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

-

_

Traditional Pinhole Camera

» The film sits behind the pinhole of the camera.

Film Plane Pinhole

-

Traditional Pinhole Camera

» The film sits behind the pinhole of the camera.

» Rays come in from the outside, pass through the
pinhole, and hit the film plane.

Pinhole

Film Plane

4
S Py
\ ta b
e =N A\ 7~ 2
~ - R g
bR, l: I - -
N %} T m’- e -t _ =z
e ® TR . [" === &
- -~ ' ' P o =, ; .
"R et ¥ 3 | J - B e -
o n '*F‘ ‘ ., .P" :’:
e . ’I ’- T
BN N 2 =
-*—. , - . ‘_‘-.-z“_-',
Ty, 57 g
' o
"I ,

_

-

_

Traditional Pinhole Camera

» The film sits behind the pinhole of the camera.

» Rays come in from the outside, pass through the
pinhole, and hit the film plane.

Photograph is upside down

———

Film Plane Pinhole

-

Virtual Camera

 The film sits in front of the pinhole of the camera.

Pinhole Film Plane

-

Virtual Camera

 The film sits in front of the pinhole of the camera.

» Rays come in from the outside, pass through the film
plane, and hit the pinhole.

28
%-3

-
—
. I ,

"*"-
l

Pinhole Film Plane
_

-

Virtual Camera

 The film sits in front of the pinhole of the camera.

» Rays come in from the outside, pass through the film
plane, and hit the pinhole.

Pinhole Film Plane

-

Overview

- Ray Casting
oWhat do we see?
oHow does it look?

/

Ray Casting

* Rendering model

» Intersections with geometric primitives
oSphere
oTriangle

» Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform grids
»(Octrees
»BSP trees

-

Ray Casting

» We invert the process of image generation by

sending rays out from the pinhole, and then we find
the first intersection of the ray with the scene.

28
%-:3‘

-
—
: l .»-

:.-»‘
l\

Pinhole Film Plane
_

/

Ray Casting

» The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

Rays
through
view plane

Eye position

-

Ray Casting

* For each sample ...
oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color sample based on surface radiance

/

Ray Casting

« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
d
Image 1mage = new Image(width, height);
for (int 1= 0; 1 < width; 1++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, 1, j);
Intersection hit = FindIntersection(ray, scene);
image[1][j] = GetColor(hit);
h
b

return 1mage;

\ * Where are we looking?
* What are we seeing?
* What does it look like?

Constructing a Ray Through a Pixel

Up direction

back

right

4)

Constructing a Ray Through a Pixel

Up direction

back) <—

right o LV

The ray has to originate at P, tHe

position of the camera. So the
equation for the ray is of the form:
Ray=P0+tV

/

Constructing a Ray Through a Pixel

Up direction

baCk) <g— =

right o LV

If the ray passes through the poin’t P,
then the solution for V is:
V=(P-Po)/|[P-Pol]

4)

Constructing a Ray Through a Pixel

Up direction

baCk] g =

If P represents the (i,j)-th pixel of the
iImage, what is the position of P?

4)

Constructing Ray Through a Pixel

- 2D Example: Side view of camera at P,
oWhat is the position of the /-th pixel PJi]?

0 = frustum half-angle (given), or field of view
d = distance to view plane (arbitrary = you pick) oo

towards
P-

/

Constructing Ray Through a Pixel

- 2D Example: Side view of camera at P,
oWhat is the position of the /-th pixel PJi]?

0 = frustum half-angle (given), or field of view

d = distance to view plane (arbitrary = you pick) Py
P, = Py + d*towards - d*tan(6)*up T

P, = P, + d*towards + d*tan(6)*up towards T
P,

(0)uel P47

/

Constructing Ray Through a Pixel

- 2D Example: Side view of camera
oWhat is the position of the i-th pixel?

0 = frustum half-angle (given), or field of view
d = distance to view plane (arbitrary = you pick)

P, =P, + d*towards - d*tan(6)*up
P, = P, + d*towards + d*tan(6)*up

P[i] = P, + ((i+0.5)/height)*(P,-P)
= P, + ((i+0.5)/height)*2*d*tan(6)*up

at P,

towards

],
o

(0)uel P47

/

Constructing Ray Through a Pixel

» 2D Example:
o The ray passing through the /-th pixel is defined by:

Ray= Po+tv P,

» Where:
oP, is the camera position

oV is the direction to the /-th
pixel: V=(P[i]-P,)/||P[i]-Py||
oP|i] is the /-th pixel location:
P[i] = P, + ((i+0.5)/height)*(P,-P,)
oP, and P, are the endpoints of the view plane:
P, =P, + d*towards - d*tan(6)*up
P, = P, + d*towards + d*tan(0)*up

towards
P-

d

(0)uel P47

/

Ray Casting

- 2D implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
d
Image 1mage = new Image(width, height);
for (int i = 0; i < height; i++) {
Ray ray = ConstructRayThroughPixel(camera, 1, height);
Intersection hit = FindIntersection(ray, scene);
image[1][height] = GetColor(hit);
)

return 1mage;

/

Constructing Ray Through a Pixel

» Figuring out how to do this in 3D is assignment 2

(0)uel P47

/

Ray Casting

« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
d
Image 1mage = new Image(width, height);
for (int 1= 0; 1 < width; 1++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, 1, j);
Intersection hit = FindIntersection(ray, scene);
image[1][j] = GetColor(hit);
h
b

return 1mage;

/

Ray Casting

« Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
d
Image 1mage = new Image(width, height);
for (int 1= 0; 1 < width; 1++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, 1, j);
Intersection hit = FindIntersection(ray, scene);
image[1][j] = GetColor(hit);

h
h

return 1mage;

/

Ray-Scene Intersection

» Intersections with geometric primitives
oSphere
oTriangle

 Acceleration techniques
oBounding volume hierarchies
oSpatial partitions
»Uniform (Voxel) grids
»(ctrees
»BSP trees

/

Ray-Sphere Intersection

Ray: P =Py +tV
Sphere: IP-0I2-r2=0

/

Ray-Sphere Intersection |

Ray: P = P, + tV

Sphere: I[P - Ol2-r2=0 Algebraic Method

Substituting for P, we get:
IPg+tV-0I2-r2=0

/

Ray-Sphere Intersection |

Ray: P =P, +tV
Sphere: I[P - Ol2-r2=0 Algebraic Method

Substituting for P, we get:
IPg+tV-0I2-r2=0

Solve quadratic equation:
at2+bt+c=0
where:
a=1
b=2V-(P,-0)
c=IP,-0Ol2-r2=0
Discard hits with negative t
(intersected behind ray origin).

[

Ray-Sphere Intersection |

Ray: P =P, +tV
Sphere:IP-0l2-r2=0

Substituting for P, we get:
IPg +tV-0I2-r2=0

Solve quadratic equation:
atz + bt+c=0
where:
a=1

Algebraic Method

P!

Generally, there are two solutions to the
quadratic equation, giving rise to points P and P".
You want to return the first hit (with positive t).

/

Ray-Sphere Intersection li

Ray: P =Py +tV
Sphere: IP-0I2-r2=0

L=O'PO

Geometric Method

/

Ray-Sphere Intersection li

Ray: P = P, + tV

Sphere: IP-0I2-r2=0

Geometric Method

L=O'PO

t., =LV (assumes V is unit length)

4)

Ray-Sphere Intersection li

Ray: P =Py +tV
Sphere: IP-0I2-r2=0

L=O'PO

Geometric Method

t., =LV (assumes V is unit length)

d2=L-+L-t.2
if (d2>r2) return O

/

Ray-Sphere Intersection li

Ray: P = P, + tV

Sphere: IP - Ol2-r2=0 Geometric Method

L=O'PO

t., =LV (assumes V is unit length)

-
-
-
-
-
-
-

t.,
2 =] o -1.2 ca .-
dz = lca

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P -

if (d2>r?) return O \
Po ¢

t=t._ -t andt+1,.
Return first hit with positive t
(ignore hits behind ray origin).

/

Ray-Sphere Intersection

 Need normal vector at intersection
for lighting calculations

/

Ray-Sphere Intersection

 Need normal vector at intersection
for lighting calculations

N =(P-0)/IIP-Oll

/

Ray-Scene Intersection

» Intersections with geometric primitives

» Triangle

 Acceleration techniques
oBounding volume hierarchies
oSpatial partitions
»Uniform grids
»(ctrees
»BSP trees

/

Ray-Triangle Intersection

» First, intersect ray with plane

» Then, check if point is inside triangle

/

Ray-Plane Intersection

Ray: P = P, + tV

Plane:P+N+d=0 Algebraic Method

Substituting for P, we get:
(Po+tV) N+d=0

Solution:
t=-(Po*N+d)/(V+N)

/

Ray-Triangle Intersection |

» Check if point is inside triangle algebraically
T3

For each side of triangle
V,=T,-P,
Vo=T,—P,

N,=V,x V,
if (P-Py)*N;<O0)
return FALSE;
end

/

Ray-Triangle Intersection |l

» Check if point is inside triangle parametrically
Every point P inside the triangle can be LE
expressed as:
P=T;+a(Tx-Ty) +B (T5-T)
where:
O<sa=s=1andO=sf =1
a+fP=1

/

Ray-Triangle Intersection |l

» Check if point is inside triangle parametrically

Solve for a, B such that: T3

P=T;+a(Ty-Ty) +p (T5Ty)

Check if point inside triangle.
O<a=s=1and0=f =<1

a+pP=1

/

Other Ray-Primitive Intersections

« Cone, cylinder, ellipsoid:
oSimilar to sphere

» Box
olntersect 3 front-facing planes, return closest

» Convex polygon
oSame as triangle (check point-in-polygon algebraically)

» Concave polygon
oSame plane intersection
oMore complex point-in-polygon test

/

Ray-Scene Intersection

* Find intersection with front-most primitive in group

Intersection FindIntersection(Ray ray, Scene scene)

{ .
min t= o
min_shape = NULL @
For each primitive in scene {
t = Intersect(ray, primitive);
if (t> 0 and t <min t) then

min_shape = primitive
min t=t

h

)
return Intersection(min t, min shape) @

/

Next Lecture

» Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform grids
»(ctrees
»BSP trees

